Motore di ricerca datesheet componenti elettronici
  Italian  ▼
ALLDATASHEETIT.COM

X  

UC3842AN Scheda tecnica(PDF) 9 Page - ON Semiconductor

Il numero della parte UC3842AN
Spiegazioni elettronici  High Performance Current Mode Controllers
Download  18 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Produttore elettronici  ONSEMI [ON Semiconductor]
Homepage  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

UC3842AN Scheda tecnica(HTML) 9 Page - ON Semiconductor

Back Button UC3842AN Datasheet HTML 5Page - ON Semiconductor UC3842AN Datasheet HTML 6Page - ON Semiconductor UC3842AN Datasheet HTML 7Page - ON Semiconductor UC3842AN Datasheet HTML 8Page - ON Semiconductor UC3842AN Datasheet HTML 9Page - ON Semiconductor UC3842AN Datasheet HTML 10Page - ON Semiconductor UC3842AN Datasheet HTML 11Page - ON Semiconductor UC3842AN Datasheet HTML 12Page - ON Semiconductor UC3842AN Datasheet HTML 13Page - ON Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 9 / 18 page
background image
UC3842A, UC3843A, UC2842A, UC2843A
http://onsemi.com
9
OPERATING DESCRIPTION
The UC3842A, UC3843A series are high performance,
fixed frequency, current mode controllers. They are
specifically designed for Off−Line and DC−to−DC
converter applications offering the designer a cost effective
solution
with
minimal
external
components.
A
representative block diagram is shown in Figure 18.
Oscillator
The oscillator frequency is programmed by the values
selected for the timing components RT and CT. Capacitor CT
is charged from the 5.0 V reference through resistor RT to
approximately 2.8 V and discharged to 1.2 V by an internal
current sink. During the discharge of CT, the oscillator
generates and internal blanking pulse that holds the center
input of the NOR gate high. This causes the Output to be in
a low state, thus producing a controlled amount of output
deadtime. Figure 2 shows RT versus Oscillator Frequency
and Figure 3, Output Deadtime versus Frequency, both for
given values of CT. Note that many values of RT and CT will
give the same oscillator frequency but only one combination
will yield a specific output deadtime at a given frequency.
The oscillator thresholds are temperature compensated, and
the discharge current is trimmed and guaranteed to within
±10% at TJ = 25°C. These internal circuit refinements
minimize variations of oscillator frequency and maximum
output duty cycle. The results are shown in Figures 4 and 5.
In many noise sensitive applications it may be desirable to
frequency−lock the converter to an external system clock.
This can be accomplished by applying a clock signal to the
circuit shown in Figure 21. For reliable locking, the
free−running oscillator frequency should be set about 10%
less than the clock frequency. A method for multi unit
synchronization is shown in Figure 22. By tailoring the
clock waveform, accurate Output duty cycle clamping can
be achieved.
Error Amplifier
A fully compensated Error Amplifier with access to the
inverting input and output is provided. It features a typical
dc voltage gain of 90 dB, and a unity gain bandwidth of
1.0 MHz with 57 degrees of phase margin (Figure 8). The
noninverting input is internally biased at 2.5 V and is not
pinned out. The converter output voltage is typically divided
down and monitored by the inverting input. The maximum
input bias current is −2.0
mA which can cause an output
voltage error that is equal to the product of the input bias
current and the equivalent input divider source resistance.
The Error Amp Output (Pin 1) is provide for external loop
compensation (Figure 31). The output voltage is offset by
two diode drops (
≈ 1.4 V) and divided by three before it
connects to the inverting input of the Current Sense
Comparator. This guarantees that no drive pulses appear at
the Output (Pin 6) when Pin 1 is at its lowest state (VOL).
This occurs when the power supply is operating and the load
is removed, or at the beginning of a soft−start interval
(Figures 24, 25). The Error Amp minimum feedback
resistance is limited by the amplifier’s source current
(0.5 mA) and the required output voltage (VOH) to reach the
comparator’s 1.0 V clamp level:
Rf(min)
3.0 (1.0 V) + 1.4 V
0.5 mA
= 8800
W
Current Sense Comparator and PWM Latch
The UC3842A, UC3843A operate as a current mode
controller, whereby output switch conduction is initiated by
the oscillator and terminated when the peak inductor current
reaches the threshold level established by the Error
Amplifier Output/Compensation (Pin 1). Thus the error
signal
controls
the
peak
inductor
current
on
a
cycle−by−cycle basis. The current Sense Comparator PWM
Latch configuration used ensures that only a single pulse
appears at the Output during any given oscillator cycle. The
inductor current is converted to a voltage by inserting the
ground referenced sense resistor RS in series with the source
of output switch Q1. This voltage is monitored by the
Current Sense Input (Pin 3) and compared a level derived
from the Error Amp Output. The peak inductor current under
normal operating conditions is controlled by the voltage at
pin 1 where:
Ipk =
V(Pin 1) − 1.4 V
3 RS
Abnormal operating conditions occur when the power
supply output is overloaded or if output voltage sensing is
lost. Under these conditions, the Current Sense Comparator
threshold will be internally clamped to 1.0 V. Therefore the
maximum peak switch current is:
Ipk(max) =
1.0 V
RS
When designing a high power switching regulator it
becomes desirable to reduce the internal clamp voltage in
order to keep the power dissipation of RS to a reasonable
level. A simple method to adjust this voltage is shown in
Figure 23. The two external diodes are used to compensate
the internal diodes yielding a constant clamp voltage over
temperature. Erratic operation due to noise pickup can result
if there is an excessive reduction of the Ipk(max) clamp
voltage.
A narrow spike on the leading edge of the current
waveform can usually be observed and may cause the power
supply to exhibit an instability when the output is lightly
loaded. This spike is due to the power transformer
interwinding capacitance and output rectifier recovery time.
The addition of an RC filter on the Current Sense Input with
a time constant that approximates the spike duration will
usually eliminate the instability; refer to Figure 27.


Codice articolo simile - UC3842AN

Produttore elettroniciIl numero della parteScheda tecnicaSpiegazioni elettronici
logo
Motorola, Inc
UC3842AN MOTOROLA-UC3842AN Datasheet
399Kb / 14P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
logo
ON Semiconductor
UC3842AN ONSEMI-UC3842AN Datasheet
399Kb / 14P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
1996 REV 1
logo
STMicroelectronics
UC3842AN STMICROELECTRONICS-UC3842AN Datasheet
167Kb / 16P
   HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER
UC3842AN STMICROELECTRONICS-UC3842AN Datasheet
129Kb / 15P
   HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER
logo
Texas Instruments
UC3842AN TI-UC3842AN Datasheet
517Kb / 11P
[Old version datasheet]   Current Mode PWM Controller
More results

Descrizione simile - UC3842AN

Produttore elettroniciIl numero della parteScheda tecnicaSpiegazioni elettronici
logo
Motorola, Inc
UC3842B MOTOROLA-UC3842B Datasheet
401Kb / 16P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
logo
Freescale Semiconductor...
MC34129EF FREESCALE-MC34129EF Datasheet
444Kb / 16P
   high performance current mode controllers
logo
ON Semiconductor
UC3844BNG ONSEMI-UC3844BNG Datasheet
399Kb / 19P
   High Performance Current Mode Controllers
August, 2013 ??Rev. 11
UC3845BDR2G ONSEMI-UC3845BDR2G Datasheet
387Kb / 19P
   High Performance Current Mode Controllers
December, 2012 ??Rev. 11
UC3845BVDG ONSEMI-UC3845BVDG Datasheet
399Kb / 19P
   High Performance Current Mode Controllers
August, 2013 ??Rev. 11
UC3845BVDR2G ONSEMI-UC3845BVDR2G Datasheet
399Kb / 19P
   High Performance Current Mode Controllers
August, 2013 ??Rev. 11
UC3844BVDG ONSEMI-UC3844BVDG Datasheet
399Kb / 19P
   High Performance Current Mode Controllers
August, 2013 ??Rev. 11
logo
Unisonic Technologies
UC3842B UTC-UC3842B_08 Datasheet
518Kb / 11P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
logo
Motorola, Inc
UC3844 MOTOROLA-UC3844 Datasheet
376Kb / 14P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
logo
ON Semiconductor
UC3842A ONSEMI-UC3842A Datasheet
399Kb / 14P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
1996 REV 1
UC3844 ONSEMI-UC3844 Datasheet
376Kb / 14P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
1996 REV 1
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18


Scheda tecnica Scarica

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEETIT.COM
Lei ha avuto il aiuto da alldatasheet?  [ DONATE ] 

Di alldatasheet   |   Richest di pubblicita   |   contatti   |   Privacy Policy   |   scambio Link   |   Ricerca produttore
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com