Motore di ricerca datesheet componenti elettronici
  Italian  ▼
ALLDATASHEETIT.COM

X  

MC1495BP Scheda tecnica(PDF) 7 Page - ON Semiconductor

Il numero della parte MC1495BP
Spiegazioni elettronici  LINEAR FOUR-QUADRANT MULTIPLIER
Download  16 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Produttore elettronici  ONSEMI [ON Semiconductor]
Homepage  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

MC1495BP Scheda tecnica(HTML) 7 Page - ON Semiconductor

Back Button MC1495BP Datasheet HTML 3Page - ON Semiconductor MC1495BP Datasheet HTML 4Page - ON Semiconductor MC1495BP Datasheet HTML 5Page - ON Semiconductor MC1495BP Datasheet HTML 6Page - ON Semiconductor MC1495BP Datasheet HTML 7Page - ON Semiconductor MC1495BP Datasheet HTML 8Page - ON Semiconductor MC1495BP Datasheet HTML 9Page - ON Semiconductor MC1495BP Datasheet HTML 10Page - ON Semiconductor MC1495BP Datasheet HTML 11Page - ON Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 7 / 16 page
background image
MC1495
http://onsemi.com
7
OPERATION AND APPLICATIONS INFORMATION
Theory of Operation
The MC1495 is a monolithic, four-quadrant multiplier
which
operates
on
the
principle
of
variable
transconductance. A detailed theory of operation is covered
in Application Note AN489, Analysis and Basic Operation
of the MC1595. The result of this analysis is that the
differential output current of the multiplier is given by:
2VXVY
RXRYI3
IA – IB = ∆I =
where, IA and IB are the currents into Pins 14 and 2,
respectively, and VX and VY are the X and Y input voltages
at the multiplier input terminals.
DESIGN CONSIDERATIONS
General
The MC1495 permits the designer to tailor the multiplier
to a specific application by proper selection of external
components. External components may be selected to
optimize a given parameter (e.g. bandwidth) which may in
turn restrict another parameter (e.g. maximum output
voltage swing). Each important parameter is discussed in
detail in the following paragraphs.
Linearity, Output Error, ERX or ERY
Linearity error is defined as the maximum deviation of
output voltage from a straight line transfer function. It is
expressed as error in percent of full scale (see figure below).
VO
+10 V
VE(max)
+10V
Vx or Vy
For example, if the maximum deviation, VE(max), is
±100 mV and the full scale output is 10 V, then the
percentage error is:
VE(max)
VO(max)
ER =
x 100 =
100 x 10–3
10
x 100 =
±1.0%.
Linearity error may be measured by either of the
following methods:
1. Using an X-Y plotter with the circuit shown in
Figure 5, obtain plots for X and Y similar to the one
shown above.
2. Use the circuit of Figure 4. This method nulls the level
shifted output of the multiplier with the original
input. The peak output of the null operational amplifier
will be equal to the error voltage, VE (max).
One source of linearity error can arise from large signal
nonlinearity in the X and Y input differential amplifiers. To
avoid introducing error from this source, the emitter
degeneration resistors RX and RY must be chosen large
enough so that nonlinear base-emitter voltage variation can
be ignored. Figures 17 and 18 show the error expected from
this source as a function of the values of RX and RY with an
operating current of 1.0 mA in each side of the differential
amplifiers (i.e., I3 = I13 = 1.0 mA).
3 dB Bandwidth and Phase Shift
Bandwidth is primarily determined by the load resistors
and the stray multiplier output capacitance and/or the
operational amplifier used to level shift the output. If
wideband operation is desired, low value load resistors
and/or a wideband operational amplifier should be used.
Stray output capacitance will depend to a large extent on
circuit layout.
Phase shift in the multiplier circuit results from two
sources: phase shift common to both X and Y channels (due
to the load resistor-output capacitance pole mentioned
above) and relative phase shift between X and Y channels
(due to differences in transadmittance in the X and Y
channels). If the input to output phase shift is only 0.6
°, the
output product of two sine waves will exhibit a vector error
of 1%. A 3
° relative phase shift between VX and VY results
in a vector error of 5%.
Maximum Input Voltage
VX(max), VY(max) input voltages must be such that:
VX(max) <I13 RY
VY(max) <I3 RY
Exceeding this value will drive one side of the input
amplifier to “cutoff” and cause nonlinear operation.
Current I3 and I13 are chosen at a convenient value
(observing power dissipation limitation) between 0.5 mA
and 2.0 mA, approximately 1.0 mA. Then RX and RY can be
determined by considering the input signal handling
requirements.
2VX VY
RX RY I3
1.0 mA
10 V
RX = RY >
= 10 k
Ω.
The equation IA – IB =
For VX(max) = VY(max) = 10 V;
is derived from IA – IB =
2VX VY
(RX + 2kT
qI13
) (RY +
2kT
qI3
) I3
with the assumption RX >>
2kT
qI13
and RY >>
2kT
qI3
.
At TA = +25°C and I13 = I3 = 1.0 mA,
2kT
qI13
2kT
qI3
=
= 52
Ω.
Therefore, with RX = RY = 10 kΩ the above assumption
is valid. Reference to Figure 19 will indicate limitations of
VX(max) or VY(max) due to V1 and V7. Exceeding these limits
will cause saturation or “cutoff” of the input transistors. See
Step 4 of General Design Procedure for further details.


Codice articolo simile - MC1495BP

Produttore elettroniciIl numero della parteScheda tecnicaSpiegazioni elettronici
logo
Motorola, Inc
MC1495 MOTOROLA-MC1495 Datasheet
973Kb / 15P
   Wideband Linear Four-Quadrant Multiplier
MC1495D MOTOROLA-MC1495D Datasheet
973Kb / 15P
   Wideband Linear Four-Quadrant Multiplier
MC1495L MOTOROLA-MC1495L Datasheet
973Kb / 15P
   Wideband Linear Four-Quadrant Multiplier
More results

Descrizione simile - MC1495BP

Produttore elettroniciIl numero della parteScheda tecnicaSpiegazioni elettronici
logo
Motorola, Inc
MC1495 MOTOROLA-MC1495 Datasheet
973Kb / 15P
   Wideband Linear Four-Quadrant Multiplier
logo
ON Semiconductor
MC1494 ONSEMI-MC1494 Datasheet
319Kb / 16P
   LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED CIRCUIT
1996 REV 0
logo
Elantec Semiconductor
EL4450C ELANTEC-EL4450C Datasheet
266Kb / 14P
   Wideband Four-Quadrant Multiplier
logo
Intersil Corporation
EL4450 INTERSIL-EL4450 Datasheet
170Kb / 10P
   Wideband Four-Quadrant Multiplier
logo
Motorola, Inc
MC1494L MOTOROLA-MC1494L Datasheet
519Kb / 14P
   MONOLITHIC FOUR-QUADRANT MULTIPLIER
logo
IC-Haus GmbH
IC-BM ICHAUS-IC-BM Datasheet
329Kb / 7P
   FOUR-CHANNEL FOUR-QUADRANT ANALOG MULTIPLIER
logo
Analog Devices
MLT04 AD-MLT04 Datasheet
428Kb / 12P
   Four-Channel, Four-Quadrant Analog Multiplier
REV. B
logo
IC-Haus GmbH
IC-BM ICHAUS-IC-BM_11 Datasheet
332Kb / 7P
   FOUR-CHANNEL FOUR-QUADRANT ANALOG MULTIPLIER
logo
Analog Devices
AD834 AD-AD834 Datasheet
258Kb / 8P
   500 MHz Four-Quadrant Multiplier
REV. C
AD834 AD-AD834_12 Datasheet
351Kb / 20P
   500 MHz Four-Quadrant Multiplier
Rev. F
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


Scheda tecnica Scarica

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEETIT.COM
Lei ha avuto il aiuto da alldatasheet?  [ DONATE ] 

Di alldatasheet   |   Richest di pubblicita   |   contatti   |   Privacy Policy   |   scambio Link   |   Ricerca produttore
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com